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Non-static spherically symmetric charged dust distribution 
in general relativity 

U. K. D E  
Physics Department, Kalyani University, Kalyani, West Bengal, India 
MS. receiz'ed 6th May 1968 

Abstract. This note establishes two theorems for a spherically symmetric charged 
dust distribution. The first theorem states that the expansion (or contraction) of a 
spherically symmetric charged dust cannot be isotropic and the second theorem 
states that a static charge is unstable to perturbations, which do not destroy the 
spherical symmetry, and would eventually collapse. 

1. Introduction 
In  recent years, the dynamics of a charged dust distribution has attracted some 

attention (Bondi and Lyttleton 1959, Liboff 1966). In  the present note we set up the 
Einstein-Maxwell equations for a non-static spherically symmetric charged dust distribu- 
tion and find that any expansion (or contraction) must be accompanied by shear. Further, 
it is shown that a spherically symmetric equilibrium distribution (i.e. one in which the 
charge density a is equal to the matter density p) would eventually collapse, if it were thrown 
out of the static state without destroying spherical symmetry. 

2. Field equations 
The general spherically symmetric line element may be taken as 

ds2 = eV(?',t) dt2 - eA(?',t) dr2 - eLXr.t)(d@2 + sin2 6 dd2). 

Here we assume the coordinate system to be co-moving, so that 

The  Einstein-Maxwell field equations in usual notations are 

with 
1 1 

T i  = - 8i(FabFab) - -- FUaFaa 
1677 4n 

and 

with J f f  UV' (4) 

where a is the charge density and p the matter density. We shall assume that the dust is 
uniformly charged, i.e. u/p is independent of Y. As is well known, it follows from the field 
equations that a / p  remains constant along stream lines which are here the t lines. Hence 
in this case u/p is a constant. The  possible non-vanishing components of Fuy as consistent 
with spherical symmetry, are only F14 (=  -F4,) and FZ3 (=  -FS2) .  If we take the 
divergence of equation (2), we get 

645 
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Also from (3) with the line element (l), we obtain 

aF14 A+; 
-- + (&- FI4 = 0 at ( 7 )  

Further, from ( 5 ) ,  F23.1 = 0, F 2 3  = A, where A is at most a function o f t  alone. In  the 
expression of T,” we would have, consequently, the term F23FZ3 = e-20(sin2 0)-1A2. For 
the line element (1) to be regular at the origin with 0, r$ as angular coordinates, eo must tend 
towards zero as y2 as Y -+ 0. Thus T,” would become arbitrarily large as Y -+ 0. Hence, 
if the solution is to be regular at the origin, one must have F23 = 0. 

Equation (2) written out explicitly gives 

F14FI4 = - e - + e - A ( & W ’ V ’  + g ~ ’ 2 )  + e-”( - 4Li)2 + Jcj; - &) (9) 
- F14F14 = e - “(&U” + ’ 2  + FV” 2 4  + l y ’ 2  - &U ’A’ + $U ’V ’ - $.’A’) 

+ e-v( - 11 - 1 x 2  - 1~ - B C ; J ~  + + 4.; - ; r ~  1 x  ) 2 4  2 

From equations (6) and ( 7 )  it follows that 
;’+v’(Li)-+gX) = 0. 

Equations (3) and (4) give the charge density 

5 = I JiJi11/2 

so that 

I P  - - - _ _ _  e A { ~ ” + ~ ’ ( ~ ’ - + A ’ ) }  
877 5 

sn 2 
P 

-- - e - A { ~ ”  + v’( U ’ - +A’)). 

Further, if equations (9) and (10) are added, 
0 = - e - + e - i,(+w’V’ + +w’2 + +U” + +V” + aV’2 - $w’A’ + - iv’h’) 

+ e-Y( - (j2 +sL~) ;  -a& - 11 - 1 X 2  +‘A+ - z ~  
4 2 2 4 4 lI)* 

Again, combining equations (9), (10) and (ll),  
4np - F14F14 = e - i [ & ~ ’ 2  + +{v” + v’( W ’  -+A’))] 

+ e-v( - & - & ~ i ) 2  -IJ - 1x2 + +&; +$A;). 
2 4  

Using equations (6) and (14), equation (16) may be further simplified to 

( 4 7 7 p + ~ 2 )  = -e-.(i;,++cjz++i;+-;x2_1~i);;_1h 2 4 6) 

where E2, the square of electric intensity, is defined as 
E2 = -FI4F14. 

Equation (17) may also be expressed with the help of equations (6) and (14) as 
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3. The case of shear-free expansion 
The shear qaB is defined by 

qao = i h ; B  + %?;a) - !z(if,UB + W j B )  - &(gal3 - %P/3) 

with d, = va;Bv4 and 8 = v ; &  Equation (19) may be written out explicitly: 

qaB &(va,B + v B , ~  - 2 r i 4 z . ~ )  

- ${vbuB(v,,, - rioCy) + u~zl,(vq,, - 

- 4 q g a B  - Z‘az’a) . 
I n  our coordinate system with the line element (1) 
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(19) 

and 

With these conditions, one finds that quo vanishes except when E = /3 # 4. If i, k run 
from 1 to 3, equation (19) reduces for 

If shear is to vanish, this equation gives us & = 1, i.e. w = X+g(r) where g is a function 
of Y only, so that w’ = X’+g’. Thus in the case of shear-free expansion (or contraction) 
equations (12), (13), (15) and (18) reduce to 

q. - e-Y/2{1( 2 gii * )-I 3gii (&+- )} . tk - 

-X‘++Xv‘ = 0 (20) 
; ’+*AV‘  = 0 (21) 

+e-v(-22);-QX2+X~) = O (22) 

e-R{+(A” + Y ” )  +(&At2  + $ v ’ ~  +gX’v ’ )  +gg’(A’ +v’) +(+g“ ++gr2 - e-g)} 

From equations (20) and (21) 

= -.+f1(t) + f d r )  
butf,(t) can be removed by transformation of time coordinate, so that X = - v + f ( r )  or 

e2 = (24) 
where R, is a function of r only. 

Again from equation (21) 1;’ - Av’1; = 0, so that on integration it gives 
1 ev = ____ 

(4 + TI2 
where RI is also a function of r alone and T is a function of t alone. 

By equation (24) 
en = R2(R1 + T)2 .  

If we substitute equations (25) and (26) in equation (23) we obtain 

+ R,” g‘R1’ R,‘R,‘ - - I  -___ (!I I[ R,+T R,+T 2R2(R1+T) (R,+T)’ 
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Let us now consider two cases, i.e. when cr = p and when cr # p, separately 
When cr = p the left-hand side of equation (27) vanishes and this gives 

T 2  
R,  = - -,7 - T = constant. 

1' 

As R, = constant, RI' = 0 and v' = 0, i.e. v is a function of time only. This leads to the 
uncharged case with F14 = 0 and cr = 0. 

When cr # p, if equation (27) is successively differentiated suitably with respect to 
Y or t ,  we finally reach the condition that either 

The  first condition leads to the static case with 1; = = 0. This corresponds to the 
equilibrium charge dust distribution as was pointed out by Bonner (1960). 

The second condition again leads to the uncharged case with F,, = 0 and cr = 0. 
This corresponds to the same condition, as was pointed out by Oppenheimer and Snyder, 

Thus we arrive at the theorem that an expansion (or contraction) of a spherically 
symmetric charged dust cannot be isotropic (i.e. shear free). 

4. Perturbation of the equilibrium distribution 
For a charged dust distribution in equilibrium one has cr = 2 p (De and Raychaudhury 

1968). T o  consider the perturbation of the equilibrium distribution, we start with the 
defining equation 

= 0 or R, = constant. 

r ,  L ~ ~ B -  = RaDv". 

From this equation one obtains (Ehlers 1961) 

RagZ"W = 8;,ca - IIya + 2(q2 - U') +*e2 
where 8, q and w are the expansion, shear and rotation defined as 

0 = 

4 = (34aoquo)1'2 
and qap is given by equation (12) 

w = (4WaoW a4 ) 112 

We now define local electric and magnetic fields as 
E" = F a v ~ ,  
Ha = &aBYUF 

RY'U 

then by equations (2)) (28) and (31) we obtain 
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For the spherically symmetric case, the rotation w and the magnetic field H vanish, so that 
for the case U = i- p, we have $32+6';ava = -2q2, or as 6' = v;:, writing G3 = 2 / - g  we 
have G/G = -2q2 ,  so that G is essentially negative. Hence, if as a result of a small 
perturbation the system starts expanding (or contracting), the expansion (or contraction) 
will be decelerated (or accelerated). 

Thus eventually, if the perturbation were sufficiently small, the expansion would be 
reversed and the collapse would proceed to a singularity in a finite time. Hence we arrive 
at the second theorem: that a static charge is unstable to perturbations, which do not 
destroy the spherical symmetry, and would eventually collapse. 
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